Многослойные керамические конденсаторы — решения от компаний VISHAY и EPCOS

Многослойные керамические конденсаторы — решения от компаний VISHAY и EPCOS

Опубликовано в номере:
PDF версия
В настоящее время многослойные керамические конденсаторы (MLCC) стали самым распространенным компонентом радиоэлектронной аппаратуры (РЭА). Это связано с тем, что внедрение новых технологий связи, высокие скорости передачи сигналов потребовали более серьезно относиться к выполнению требований по электромагнитной совместимости (ЭМС). Но вызванный этим рост потребления привел к дефициту этих популярных компонентов и, хотя предпринимаются попытки их замены — это не выход, так как свойства MLCC конденсаторов уникальны. Давайте вкратце определим «Кто виноват» и рассмотрим «Что делать?».

Многослойные керамические конденсаторы (MLCC — multilayer ceramic capacitor) это достаточно привычные компоненты РЭА, которые, несмотря на присущие им недостатки, широк используются для фильтрации, развязки, блокировки и подавлению помех, что крайне важно с точки зрения выполнения требований по электромагнитной совместимости (ЭМС).

В общем случае многослойные керамические конденсаторы, уже судя из своего названия представляют собой слоистую структуру в виде керамического пирога, «промазанного» токопроводящими слоями. Слои керамики выполняют роль диэлектрика, а металлизация между ними — обкладок (рис. 1).

Типовая структура MLCC-конденсатора категории BME

Рис. 1. Типовая структура MLCC-конденсатора категории BME

Однако в таких конденсаторах есть существенное различие. Оно касается внутренних электродов и в меньшей степени терминалов. Что касается терминалов то они имею те или иные вариации, обусловленные техпроцессом изготовления, но, главное, что нас разработчиков интересует и касается напрямую, это то, что из-за необходимости соответствия Директиве RoHS, они могут иметь чисто оловянное покрытие (низкотемпературное) или SAC (высокотемпературное), но в настоящее время большая часть MLCC-конденсаторов имеет оловянное покрытие. Это позволяет повысить надежность их пайки, остальные проблемы [1] здесь уходят на второй план, так как современная электроника широкого применения, ввиду ее быстрого морального старения, не рассчитывается на длительный срок жизни.

Что касается внутренних электродов, то здесь мы имеем два варианта. Первый — это MLCC-конденсаторы обычного или базового исполнения, которые относятся к категории BME (Base Metal Electrode). Их электроды выполняются из никеля (Ni) или медно-никелевого (NiCu) сплава. Вторые — это конденсаторы с обкладками из благородных металлов — сплав AgPd, такие MLCC-конденсаторы относятся к категории NME (Noble Metal Electrode) и отличаются повышенной надежностью. Для первой категории никель иногда убирается даже и из терминалов. Конденсаторы категории BME — это не ширпотреб. Они обеспечивает более высокую нагрузочную способность по напряжению. В качестве основного диэлектрика для конденсаторов малой емкости используется метацирконат кальция, но в настоящее время более популярны MLCC-конденсаторы с диэлектриками типа X7R и X5R, которые основаны на титанате бария с такими добавками, как диоксид марганца [5]. Оба диэлектрика хорошо сочетаются с медно-никелевыми и никелевыми электродами.

Однако есть проблема. В настоящее время ряд объективных и субъективных причин привели к дефициту MLCC-конденсаторов на рынке (рис. 2) [9] и причин тут несколько. Во-первых, рост спроса. Современный смартфон содержит сотни, а электрический автомобиль более 10 тысяч MLCC. Это основные потребители MLCC-конденсаторов, в типичном смартфоне общая емкость керамических конденсаторов достигает 75 мкФ. Вторая причина дефицита кроется не только в росте потребления, ее можно было бы решить, нарастив мощности их выпуску, она еще и непосредственно в технологии изготовления самих конденсаторах. И делится на две — исчерпание возможностей наращивать объемы выпуска керамики, и рост дефицита на серебро (его добыча в 2018 году упала на 11%) и палладий, которые, как уже было сказано, используются в высококачественных MLCC. Как результат рынок MLCC исчерпал свои резервы и его рост почти остановился. Тренд это или временное явление? Жизнь покажет. Но пока мы имеем то, что имеем.

Динамика поставок керамических конденсаторов в млрд. микрофарад в период 1990–2018 гг.

Рис. 2. Динамика поставок керамических конденсаторов в млрд. микрофарад в период 1990–2018 гг.

Поскольку резкого увеличения выпуска не предвидится, для разработчиков РЭА здесь один выход — оптимизировать использование MLCC и остановить свой выбор на поставках от известных брендов таких, как, например, Vishay Intertechnology (VISHAY) и EPCOS AG (EPCOS, ныне одна из компаний TDK Corporation). Применение таких конденсаторов даст гарантии получения заданных электрических характеристик и надежности конечного продукта, и позволит избежать необходимости чрезмерного резервировать MLCC-конденсаторов на плате.

В чем причина того, что мы даже в условиях настающего дефицита не можем кардинально уйти от использования MLCC-конденсаторов? Дело в том, что основная масса таких конденсаторов используется в цепях питания и именно для решения проблемы ЭМС, а чапаевский подход — в лоб, путем использования электролитических конденсаторов, эту проблему не решает. Подробное рассмотрение вопросов сравнения и особенностей использования конденсаторов разных технологий и их комбинаций выходит за рамки настоящей статьи (подробно см. [2, 3, 4]). Тем не менее, вкратце отметим ряд важных моментов.

Используя привычные для нас дешевые алюминиевые и более дорогие — танталовые и полимерные конденсаторы, мы можем решить проблему сокращения MLCC-конденсаторов, но лишь частично и далеко не везде. Кроме того, они при относительно малых номинальных емкостях имеют несравнимо большие габариты.

Алюминиевые электролитические конденсаторы в свете подавления высокочастотных электромагнитных помех (ЭМП) как основной элемент вообще не рассматриваются. Их задача обеспечить накопление энергии и справиться с пульсациями, и даже здесь они, сами по себе, бессильны и без MLCC-конденсаторов справиться не могут. Что касается алюминиевых полимерных конденсаторов, то они весьма перспективны, но эта замена пока еще дорогая, коммерчески доступный выбор таких конденсаторов ограничен и разработчики к ним еще не привыкли.

Что касается танталовых конденсаторов, то они не только дорогие, но и сами находятся в кризисе в части поставок, и как раз MLCC-конденсаторы помогли в свое время из него выйти [7]. Кроме того, им присущ ряд неприятных моментов, например, образование потенциальных локальных очагов возгорания. Как известно они изготавливаются на основе аморфного пентаоксида тантала (Ta2O5), а в качестве электролита обычно используется твердый диоксид марганца (MnO2). Несоблюдение требований по максимальному рабочему напряжению и токам повышает температуру внутри конденсатора, которая приводит к деградации. Но главная проблема — это высокое содержание кислорода в MnO2, что при пробое приводит к образованию потенциальных локальных очагов возгорания. Это тепло, в свою очередь, переводит аморфный пентаоксид тантала в кристаллическую форму, которая является хорошим проводником, со всеми вытекающими отсюда последствиями, а сам процесс выделения тепла становится уже лавинообразным. Имеются танталовые конденсаторы с полимерным диэлектриком, но они решают проблему не в полной мере, так как имеют малую емкость и большой ток утечки, особенно при включении и не широкодоступны.

Если обратиться к повседневной практике, то что греха таить, вопросу оптимального баланса при выборе комбинации входных и выходных конденсаторов для подавления пульсаций и помех DC/DC-преобразователей разработчики уделяют недостаточно внимания. Здесь обычно пользуются или традицией — «вали кулем, потом разберем», мол, все так делают или опытом, который, как известно, «сын ошибок трудных». В общем, как любят шутить украинские разработчики РЭА, здесь достаточно часто используется справочник «Стэля» (укр. стеля — это потолок), но такие потолочные подходы лучше оставить любителям и пользоваться инженерным анализом с математическими выкладками.

Однако, чтобы не приводить здесь громоздкие подтверждающие расчеты, только скажем, что общий пульсирующий ток в любом случае необходимо разделить между сглаживающими электролитическими и керамическими MLCC-конденсаторами. Это же касается и входных и выходных цепей. Так что, как бы нам не хотелось, без MLCC здесь никак.

На рис. 3 в качестве примера показано напряжение пульсации на выходе понижающего DC/DC-преобразователя при использовании алюминиевого полимерного конденсатора на выходе понижающего DC/DC-преобразователя совместно с керамическим многослойным конденсатором [8]. Комментарии тут, как говорится, излишни.

Сравнение использования алюминиевых электролитических конденсаторов на выходе понижающего DC/DC-преобразователя с керамическим многослойным конденсатором (MLCC)

Рис. 3. Сравнение использования алюминиевых электролитических конденсаторов на выходе понижающего DC/DC-преобразователя с керамическим многослойным конденсатором (MLCC)

Кроме того не забываем, что одним из решений проблемы ЭМС является еще и оптимизация формы импульсов, а именно — уменьшение скорости нарастания. Точно положить фронт нам опять-таки помогут MLCC-конденсаторы, но на этот раз относительно малой емкости.

Основными же преимуществами современных MLCC-конденсаторов являются их высокая удельная емкость, эти конденсаторы доступны в очень небольших форм-факторах и их легко «рассыпать» по печатной плате. Кроме того, они предлагают нам широкий диапазон номинальных емкостей, широкий диапазон рабочих напряжений, стандартный набор и низкие значение эквивалентного последовательного сопротивления ESR (equivalent series resistance) с малой зависимостью от температуры, низкую собственную индуктивность ESL (Equivalent Series Inductance), сверхмалый ток утечки и высокую стабильность ТКЕ (температурный коэффициент емкости) для некоторой части диэлектриков, как правило, для конденсаторов небольшой номинальной емкости, для них же характерно малое отклонение и сдвинутый в область более высоких частот собственный резонанс. Как можно видеть — достоинств много.

Однако в этой бочке меда есть и ложка дегтя. Недостатки — малая механическая прочность и устойчивость к термоудару (при пайке требуют подогрев), высокая зависимость емкости от напряжения смещения, низкий ТКЕ и большое отклонение от номинальной емкости для конденсаторов больших номиналов, для них же сдвинутый в область более низких частот собственный резонанс, пьезоэффект (механические вибрация и удары превращаются в электрический сигнал) (причины и следствия см. [6]).

Взвесив все pro et contra можно сказать, что здесь нужен обдуманный подход, а реализовать его в полной мере помогут преимущества конденсаторов от известных брендов, поскольку в характеристиках их продуктов вы будете иметь уверенность на все 100%. С ними вы сможете принять меры к оптимизации схемных решений, обеспечив заданную надежность, избежав излишнего резервирования и, соответственно, лишних затрат.

Итак, что нам предлагается на рынке? Компании VISHAY и EPCOS предлагают нам широкий выбор многослойных керамических конденсаторов различного исполнения и разного применения.

Что касается компании VISHAY, то производством многослойных керамических конденсаторов MLCC занимается Vishay Vitramon, компания, входящая в состав Vishay с 1994 года. Компания производит конденсаторы для поверхностного монтажа двенадцати стандартных типоразмеров с использованием восьми различных диэлектрических материалов. Диапазон номинальных напряжений конденсаторов: 6,3-3000 В, а максимальная рабочая температура до 175 °C. Нам коммерчески доступны следующие основные варианты исполнения MLCC-конденсаторов [10]:

  1. Vishay Vitramon Chip Capacitor: Конденсаторы серии VJ — это надежная замена конденсаторов для поверхностного монтажа с содержанием свинца. В серии доступны конденсаторы варианта BME для диэлектриков X7R/X5R/Y5V и варианта NME для диэлектрика NP0, а также высокодобротные конденсаторы типоразмера 0402.
  2. High-Q Serie: C0G (NP0) сверхстабильные высокочастотные конденсаторы.
  3. Medical Grade Capacitors: Для имплантируемых сердечно-сосудистых систем.
  4. Automotive Grade Capacitors: Конденсаторы, соответствуют требованиям AEC Q200 для автомобильной электроники.
  5. MIL-PRF‑55681: Соответствует требованиям спецификации Министерства обороны для конденсаторов военного класса.
  6. High-Voltage Series: Для приложений с напряжениями выше 200 В.
  7. С диэлектриком X8R: Стабилизированная емкость с надежным представлением до + 150 °C.
  8. Серия Tip N Ring: Заменяет пленочные конденсаторы высокого напряжения в фильтрах телекоммуникационных линий.
  9. Серия VTOP: Низкопрофильные, толщина менее 0,026″ (0,66 мм).
  10. Серия Low Inductance (с низкой собственной индуктивностью): Имеют индуктивности в половину меньше, чем у стандартных продуктов.
  11. Серия Cer-F: Альтернатива пленочным конденсаторам со стабильным температурным коэффициентом емкости.
  12. Серия устойчивых к воздействиям чип-конденсаторов RuGGred: Усовершенствованный диэлектрик X7R, низкое энергопотребление, более высокое по сравнению со стандартными конденсаторами рабочее напряжение и отличные характеристики стойкости к тепловому удару.
  13. Серия OMD-Cap: Снижает риск короткого замыкания и снижения сопротивления изоляции от трещин на конденсаторах из-за изгиба платы, отличатся высоким напряжением пробоя по сравнению со стандартными конденсаторами.
  14. Серия HVArc Guard: Высоковольтные керамические SMD-конденсаторы большой емкости, разработанные для предотвращения образования поверхностной электрической дуги.

Кроме того, предлагаются исполнения конденсаторов с повышенной надежностью, предназначенные для требующей высокой гарантированной надежности аппаратуры, работающей в жестких условиях окружающей среды. Конденсаторы для требующей высокой гарантированной надежности аппаратуры с терминалами, имеющими покрытие матовым оловом с подслоем Sn/Pb с минимальным содержанием свинца 4% выводами. Конденсаторы устойчивые к механическим нагрузкам с гибкими терминалами. Конденсаторы высокой емкости на основе диэлектриков X5R и X7R (рабочая температура до + 125 °C), предназначенные для замены танталовых электролитических конденсаторов. В сериях доступны конденсаторы сверхмалых форм-факторов для миниатюрной электроники и конденсатор с высокой добротностью. Для некоторых типов аппаратуры интерес будут представлять немагнитные конденсаторы, которые выполняются без содержания никеля [10]. Конденсаторы представлены в серии VJ (Non-Magnetic Series) и доступны с диэлектриками C0G (NP0) с диапазоном емкостей 0,5 пФ … 39 нФ (рабочее напряжение 10–3000 В) и X7R/X5R с диапазоном емкостей 100 пФ … 6,8 мкФ (рабочее напряжение 6,3–3000 В).

Компания EPCOS так предлагает нам очень широкий выбор рассматриваемых конденсаторов. В том числе и MLCC выводного исполнения, что позволяет уменьшить механические напряжения и обеспечить повышенную электрическую прочность изоляции, увеличивая пути токов утечки (рис. 4) [11].

MLCC выводного исполнения компании EPCOS позволяют уменьшить механические напряжения на конденсаторе и обеспечивают повышенную электрическую прочность изоляции

Рис. 4. MLCC выводного исполнения компании EPCOS позволяют уменьшить механические напряжения на конденсаторе и обеспечивают повышенную электрическую прочность изоляции

В настоящее время от EPCOS коммерчески доступны следующие основные серии MLCC конденсаторов [12]:

  1. Для автомобильной промышленности:
    • Серия CGA— конденсаторы с номинальным напряжением до 75 В.
    • Серия CGA— конденсаторы с номинальным напряжением 100-630 В.
    • Серия CGA— конденсаторы с номинальным напряжением 1000 В и выше.
    • Серия CGA— конденсаторы с диапазоном рабочих температур до 150 °C.
    • Серия CKG— конденсаторы с двумя L‑образными направляющими.
    • Серия CGA— конденсаторы с мягкими терминалами.
    • Серия CNA— конденсаторы с мягкими терминалами и низким ESR, которое было достигнуто благодаря тому, что ток может проходить через слои с низким сопротивлением, токопроводящей смолой покрыты только места пайки.
    • Серия CEU— конденсаторы с двумя последовательно соединенными конденсаторами в одном керамическом корпусе и с полимерными терминалами.
    • Серия CGA— конденсаторы для монтажа с помощью токопроводящего клея.
    • Серия CGA— конденсаторы с терминалами по широкой стороне для снижения ESL.
    • Серия CGA3EA— конденсаторы для защиты от электростатических разрядов в соответствии с IEC 61000–4-2 (Уровень 4).
  1.  Для коммерческого применения:
    • Серия C— конденсаторы с номинальным рабочим напряжением до 75 В.
    • Серия C — конденсаторы с номинальным рабочим напряжением 100-630 В.
    • Серия C— конденсаторы с номинальным рабочим напряжением 1000 В и выше.
    • Серия CGB— конденсаторы толщиной менее 0,22 мм.
    • Серия C — конденсаторы с диапазоном рабочих температур до 150 °C.
    • Серия CKG— конденсаторы двумя L-образными направляющими.
    • Серия CA— конденсаторы с низким профилем, низким ESR и высокой емкостью, благодаря структуре Inline (в линию), в которой MLCC-конденсаторы укладываются рядом друг с другом и оптимизируют заполнение металлического каркаса.
    • Серия C — конденсаторы с мягкими терминалами и низким ESR, которое было достигнуто благодаря тому, что ток может проходить через слои с низким сопротивлением, токопроводящей смолой покрыты только места пайки.
    • Серия C— конденсаторы с уникальным дизайном для уменьшения отказов по причине коротких замыканий.
    • Серия C— конденсаторы с терминалами по широкой стороне для снижения ESL.
    • Серия CLL— конденсаторы с несколькими терминалами и уникальным внутренним дизайном для снижения ESL.

Кроме того, доступны две серии конденсаторов CGJ с повышенной надежностью — конденсаторы с номинальным рабочим напряжением до 50 В и с номинальным рабочим напряжением 100-630 В.

Данная статья не имела целью подробно и в деталях расписать особенности и преимущества каждой серии многослойных керамических конденсаторов таких гигантов индустрии, как компании VISHAY и EPCOS, но, на что автор статьи очень надеется, она будет полезным гидом по их выбору. Применение качественных конденсаторов гарантирует надежность конечного продукта и вписывается в парадигму — лучше меньше (по количеству) да лучше (по качеству), избавляя разработчиков устанавливать лишние MLCC-конденсаторы с целью их резервирования.

И напоследок хочется отметить, поскольку одной из основных областей применения данной продукции так или иначе является решение проблем электромагнитных помех и выполнения требований в части электромагнитной совместимости, то читателям будет весьма целесообразно обратить свое внимание на серию статей, посвященную этой проблеме [13], поскольку она имеет исключительно и только комплексное решение.

Литература
  1. Рентюк В. RoHS-директива: защита экологии или рынков? // Технологии в электронной промышленности, № 5’2013.
  2. Richardson Christopher. ANP038 «Selecting and Combining Capacitor Types for High Ripple Switching Converter Input and Output Rails», Wurth Elektronik.
  3. Рентюк В. Электролитические конденсаторы: традиционные или полимерные, вот в чем вопрос. // Компоненты и технологии, № 9’2017.
  4. Фрэнк Пухане (Frank Puhane), перевод Владимир Рентюк. Алюминиевые конденсаторы: электролитический или полимерный? Полноценная реализация их преимуществ. Компоненты итехнологии, № 8’2018.
  5. Richard Wilson. Capacitor reliability can be improved with the right materials.
  6. MLCC solutions for suppressing acoustic noise in the battery lines of laptop computers.
  7.  Скрипников А. Керамические конденсаторы: выход из танталового кризиса//Компоненты и технологии № 6’2001.
  8. Guide to Replacing an Electrolytic Capacitor with an MLCC.
  9. Dennis  Zogbi. MLCC Shortages Are Creating Challenges In Multiple End-Markets in 2018.
  10. Surface-Mount Multilayer Ceramic Chip Capacitors for Non-Magnetic Applications.
  11. Solution Guides.
  12. Multilayer Ceramic Chip Capacitors.
  13. Рентюк В. Рентюк В. Электромагнитная совместимость: проблема, от решения которой не уйти//Компоненты и технологии. 2017. № 7.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *