Керамические ограничители бросков напряжения TDK-EPCOS для шин CAN и FlexRay
Во всех высокотехнологичных системах современного автомобиля применяется CAN-протокол или высокоскоростной сетевой протокол FlexRay, представляющие собой современное надежное решение для организации связи блока управления с дополнительными устройствами. Так, в некоторых автомобилях CAN связывает иммобилайзер, предназначенный для блокирования транспортного средства (чтобы не допустить к его управлению посторонних лиц, в том числе при попытках угона), а также приборные панели, системы пассивной безопасности и современные системы помощи водителю, работающие в реальном времени на базе видеоаналитики и данных от навигационной системы. Учитывая, что протокол CAN ISO 15765-4 вошел в состав стандарта OBD-II (on-board diagnostics), определяющего требования по диагностике транспортного средства с полным контролем двигателя, мониторингом внутренних частей салона и дополнительных устройств, а также диагностики сети управления автомобилем, здесь особенно остро стоит вопрос уязвимости таких шин передачи данных. Чтобы избежать возможных проблем, все линии связи должны быть надлежащим образом защищены по отношению к кондуктивным (наведенным) электромагнитным помехам (ЭМП) и воздействию электростатических разрядов и не создавать помех для функционирования оборудования. Другими словами, необходимо выполнить жесткие требования по электромагнитной совместимости (ЭМС).
Требования по устойчивости к внешним воздействиям определены и указаны в соответствующих стандартах на конкретный тип оборудования, в том числе и для интерфейсных шин в автомобильных приложениях, выпущенных OEM-производителями. Проблема защиты усугубляется и тем, что шина CAN (Controller Area Network, CAN) мигрирует из своей традиционной автомобильной области применения, для которой она, собственно, и разработана, в индустриальную [1], где требования по ее устойчивости к внешним воздействиям столь же жестки, а их реализация весьма непроста. Это довольно обширная тема, предполагающая отдельное обсуждение, что не входит в цели настоящей статьи. Для получения более детальной информации по данному вопросу можно обратиться, например, к [2, 3].
Как уже было сказано, в критических ситуациях, возникающих при эксплуатации транспортного средства, современные автомобили все больше полагаются на электронику. Таким образом, существует растущая потребность обеспечить ее функционирование без сбоев в присутствии помех и не создавать помех другим системам внутри транспортного средства. Первая проблема, с которой мы сталкиваемся при выборе элемента защиты и которую необходимо учитывать при выборе решения, обеспечивающего защиту, — уровень воздействующей помехи, подлежащей ограничению. Вторая — минимальное вмешательство элементов защиты в структуру полезного сигнала. Третья — удобство реализации решения.
Если мы обратимся к [4], то наш выбор по большому счету ограничится двумя вариантами: многослойными варисторами (Multilayer varistor, MLV) и полупроводниковыми приборами, или TVS-диодами (Transient Voltage Suppressor, TVS), специально разработанными для подавления выбросов напряжения. Что касается TVS-диодов, они подробно рассмотрены в [4], и если принимать во внимание диоды специального назначения — это оптимальный вариант для высокоскоростных линий связи, преимущественный по отношению к обычным варисторам. Однако, когда дело касается автомобильной промышленности и не столь скоростных в современном представлении шин, как CAN и FlexRay, то на сцену выходит еще один игрок — керамический ограничитель бросков напряжения (Ceramic Transient Voltage Suppressor, CTVS) [5], созданный компанией EPCOS. В объемном портфеле предложений CTVS имеются не только многослойные варисторы для обычных применений, но специально адаптированные приборы для нужд автомобильной индустрии, предназначенные для защиты шин данных CAN и FlexRay.
Что касается компании EPCOS, это один из лидеров на европейском рынке и производитель пассивных электронных компонентов, которые обеспечивают самый высокий стандарт защиты от электростатического разряда (Electrical Static Discharge, ESD). Благодаря прошедшей в 2008 году консолидации компаний TDK и EPCOS клиентам открылся и широкий доступ к портфелю с предложением катушек индуктивности, в том числе и синфазных дросселей от TDK. Это позволило создавать полные и надежные решения по электромагнитной совместимости (ЭМС) не только для отдельных частей оборудования, но и для высокоскоростных шин данных. Помимо одночиповых варисторов, клиентам компаний предлагаются варисторные сборки, которые сочетают комплексную защиту от воздействия разрядов статического электричества и эффективное подавление ЭМП [6].
Решение вопросов защиты высокоскоростных шин CAN и FlexRay
В настоящее время шины CAN и FlexRay являются основными высокоскоростными системными шинами, развернутыми в рамках автомобильных приложений. Высокоскоростная шина CAN обеспечивает скорость передачи данных до 1 Мбит/с, FlexRay — до 10 Мбит/с, а использование таких шин данных в критических для функционирования системах автомобиля, влияющих на безопасность вождения, накладывает не только требования по гарантии непосредственно их защиты от наведенных помех в виде бросков напряжения, но и по электромагнитной совместимости со всем остальным оборудованием автотранспортного средства.
Защита от разрядов статического электричества
События, связанные с воздействием разрядов статического электричества из внешних источников, как правило, непредсказуемы и могут легко превышать минимальный уровень защиты от электростатического разряда полупроводниковых компонентов, обычно используемых для предохранения приемников и передатчиков шинных интерфейсов. В этой части требования по ЭМС установлены международным стандартом IEC 61000-4-2 [2, 3]. Для рассматриваемого случая для всех узлов системных шин, особенно при их подключении к внешним интерфейсам, рекомендуется степень жесткости 4, устанавливающая норматив по воздушному разряду на уровне 15 кВ и прямому разряду 8 кВ. Создать такую степень защиты с помощью обычных TVS-диодов может быть затруднительным. Но даже столь высокая степень защиты обеспечивается с одночиповыми MLV-варисторами, а еще более эффективно — с варисторными сборками, содержащими два варистора с общим заземлением в одном корпусе и выполненными как единый компонент [6]. Примеры реализации такой защиты от электростатического разряда показаны на рис. 1, 2. На рис. 1 представлена типичная схема защиты от разрядов статического электричества высокоскоростных шин CAN с использованием решения на базе двух отдельных MLV-варисторов CT0603S14AHSG [7]. А на рис. 2 — типичная схема защиты для высокоскоростных шин CAN, выполненная на базе варисторной матрицы CA05M2S10T100HG [7] в виде двух MLV-варисторов и конденсаторов емкостью 10 пФ. По отношению к обычным TVS-диодам оба использованных элемента имеют достаточно высокий рейтинг по току. Они рассчитаны на импульсные токи до 5 А (8/20 мкс).
Соответствие требованиям в части ЭМС
Рассматриваемые нами многослойные варисторы, предлагаемые TDK-EPCOS, помимо обеспечения высокого уровня защиты от разряда статического электричества, предлагают дополнительные преимущества, которые помогают решать вопросы по электромагнитной совместимости. В частности, они могут обеспечить более высокие требования по устойчивости к помехам от высокочастотных сигналов, что является критическим фактором для таких высокоскоростных шин, как, например, FlexRay. [1]
Многослойные варисторы соответствуют самым высоким требованиям стандартов в части обеспечения помехоустойчивости к высокочастотным наводкам благодаря присущей им высокой линейности вольт-амперных характеристик (ВАХ). Они не оказывают воздействия на системные шины, которые их просто не замечают, в то время как полупроводниковые диоды-супрессоры могут вызывать потерю мощности полезного сигнала из-за нелинейности ВАХ [4] и повлиять на помехоустойчивость.
С этой целью разработчиками TDK-EPCOS проведена проверка воздействия TDK-EPCOS на устойчивость CAN-трансиверов к влиянию электромагнитных помех [6]. Здесь подразумевается их помехоустойчивость при передаче сигналов по шине данных при воздействии высокочастотной помехи на выводы транси-вера непосредственно, по линиям передачи данных, работающим как приемные антенны. Указанный эффект можно смоделировать методом прямого введения мощности (Direct Power Injection test, DPI) в соответствии со стандартом IEC 62132-4 [8]. В ходе этой процедуры имитирующий синфазную помеху испытательный ВЧ-сигнал мощностью 4 Вт (36 дБм) накладывается на полезный сигнал, проходящий по линиям CAN, при этом производится контроль работы трансивера, то есть отслеживаются ошибки приема или передачи данных.
На рис. 3 показаны сравнительные измерения, проведенные по методу прямого введения мощности сигнала помехи. В этом примере измерения осуществлялись для трансивера высокоскоростной шины CAN с варистором CT0603S14AHSG [7]. Результаты демонстрируют хорошую помехоустойчивость трансиверов к высокочастотным помехам с применением для их защиты многослойных варисторов. Требования в части контрольных уровней в тесте DPI полностью выполнены, в то время как при использовании полупроводникового TVS-диода требования по предельно допустимым уровням восприимчивости к высокочастотным помехам не выполняются.
Как видно из рисунка, в области частот до 3 МГц устойчивость к ВЧ-помехам при применении MLV-варисторов меньше, чем при использовании TVS-диода. То, что мы наблюдаем в районе частоты 3 МГц, связано с тем, что указанный диапазон частот слишком близок к частотному диапазону передачи данных по шине CAN. Здесь устойчивость определяется свойствами самого трансивера и не связана с влиянием предлагаемого решения, выше этой области устойчивость к внешним высокочастотным воздействиям — идеальна, и введение в схему MLV-варисторов также незаметно.
Комбинированное решение для шины FlexRay
Что касается FlexRay, здесь идеальная комбинация фильтрации электромагнитных помех и защиты от электростатического разряда для высокоскоростных шинных систем может быть достигнута благодаря использованию еще одного интересного компонента — согласованной по емкости варисторной матрицы (Matched Capacitance Varistor Array, MCVA), тоже предлагаемой TDK-EPCOS. Подобно описанным ранее сборкам, они состоят из двух варисторов с общим основанием (рис. 4а), с той лишь разницей, что если собственная емкость варистора обычно рассматривается как некая неизбежная паразитная величина [4], то емкость MCVA специально устанавливается на более высокие значения и с высокой точностью, а это, учитывая технологию изготовления многослойных варисторов, сделать не так уж просто. Тем не менее TDK-EPCOS удалось решить подобную проблему.
Преимущества MCVA в том, что эти приборы могут действовать еще и как фильтр для подавления нежелательных собственных радиочастотных излучений, что исключает необходимость в дополнительных конденсаторах для фильтрации помех, лежащих в области высоких частот (рис. 4б). Благодаря достаточно точному согласованию емкостей C1 и C2 (в этом состоит особенность MCVA) удается избежать перекрестных высокочастотных помех между линиями шины данных. Указанное в спецификации отклонение ∆C определяется как ∆C = |C1–C2|/min{C1, C2}. Для серийных MCVA типовое значение отклонения ∆Ctyp = 1%, а максимальное отклонение ∆Cmax не превышает 3%.
Когда MCVA напрямую подключается на выводы трансивера FlexRay (рис. 5), конденсатор заземления CS шинного окончания FlexRay оказывается подключенным последовательно с каждым собственным согласованным конденсатором MCVA. Таким образом, заземляющий конденсатор уменьшает паразитную емкость относительно «земли», а согласованные емкости C1 и C2 MCVA (в этом примере использовался вариант исполнения MCVA CA05M2S14T101HG с согласованной емкостью 2×100 пФ) обеспечивают эффективную фильтрацию собственных ЭМП линий шины данных, что особенно заметно для диапазона частот 100–200 МГц.
Если говорить о влиянии такого решения на устойчивость FlexRay-трансиверов к воздействию электромагнитных помех, то разработчиками TDK-EPCOS была проведена соответствующая сравнительная проверка [6]. Результаты проверки, также выполненной методом DPI, демонстрируют малое влияние предлагаемого решения. Искажения сигнала, показанные на рис. 6, при введении в цепь сплит-терминации MCVA (рис. 5) почти аналогичны искажениям, вносимым непосредственно самим трансивером без схемы защиты. Для сравнительных испытаний применялась матрица CA05M2S14T101HG [6] типоразмера 0508 с согласованными конденсаторами емкостью 2Ѕ100 пФ.
Что касается выполнения требований в части ЭМС по собственному излучению, то представленные на рис. 7 результаты измерения ВЧ-излучения показывают, что применение матриц MCVA никоим образом не приводит к дополнительной радиочастотной эмиссии. Более того, присущие системе радиопомехи, в частности лежащие в диапазоне 100–200 МГц, будут отфильтрованы, что улучшает характеристики шины FlexRay по радиочастотному излучению.
На рис. 8 показаны кривые измерения тока ESD-разряда, демонстрирующие его подавление с помощью согласованных емкостных варисторных матриц. Как можно видеть, при применении MCVA токи разряда 2, 4 и 8 кВ будут уменьшены до нуля с минимальными пиками, не превышающими 2 А. В данном тесте также использовалась матрица MCVA с согласованными конденсаторами емкостью 2×100 пФ.
Помимо защиты от ЭМП и разрядов статического электричества (уровень защиты от ESD не менее 15 кВ), многослойные варисторы и матрица выдерживают импульсы, возникающие при сбросе нагрузки (27 В/0,3 с), а также импульсы напряжения запуска двигателя (до 28 В/60 с). К тому же они двунаправленные и квалифицированы на основе AEC-Q200. Все это в целом делает варисторные матрицы MCVA и многослойные MLV-варисторы весьма подходящим компонентом в решениях защиты, предназначенных для автомобильных приложений.
- Джи Р. CAN против RS‑485: почему тенденция направлена в сторону CAN // Компоненты и технологии. 2018. № 1.
- Рентюк В. Что нужно знать по испытаниям на выполнение требований по ЭМС для изделий коммерческого назначения // Компоненты и технологии. 2017. № 7.
- Зауэрвальд М. Десять советов для успешного проектирования автомобильной электроники с выполнением требований по ЭМС/ЭМП // Компоненты и технологии. 2016. № 5.
- Рентюк В. Преимущества, особенности применения и проблема выбора кремниевых защитных элементов для высокоскоростных интерфейсов // Компоненты и технологии. 2017. № 10.
- Ceramic transient voltage suppressors, CTVS. TDC, Application notes, July 2014.
- Ceramic Transient Voltage Suppressors: Combined EMI Filtering and ESD Protection for High-Speed Bus Systems, EPCOS Product Brief 2012, EPCOS AG A Member of TDK-EPC Corporation.
- CTVS — Ceramic transient voltage suppressors SMD multilayer varistors (MLVs), automotive E seriesEPCOS AG is a TDK Group Company. February 2016.
- Abhijeeth Aarey. Signal Chain Basics #125: Automotive immunity requirements for CAN transceivers. Planet Analog, 6/16/2017