гальваническая развязка

Использование гальванического разделения цепей для улучшения электромагнитной совместимости

Опубликовано в номере:
PDF версия
В статье рассматриваются способы использования гальванической развязки, позволяющей улучшить электромагнитную совместимость. Кратко описаны три технологии производства гальванических развязок и их основные отличия.

Введение

Электронные системы часто работают в условиях сложной электромагнитной обстановки. Причем это обстоятельство не всегда очевидно: например, проложенный рядом с оборудованием силовой кабель, о наличии которого никто не догадывается, может доставить серьезные неприятности. Прикосновение человека к прибору с плохо обеспеченным защитным заземлением может привести к электростатическому разряду. Сильный грозовой разряд способен вывести из строя входные каскады устройства, если провода, соединяющие компоненты системы, имеют достаточно большую длину.

Стандартные способы защиты устройства от таких нежелательных случаев хорошо известны. К ним относится применение TVS-диодов во всех входных каскадах, в т. ч. на вводе шин питания, экранирование и заземление корпуса, экранирование сигнальных проводов. Мы рассмотрим влияние гальванического разделения цепей на электромагнитную совместимость (ЭМС). Этот способ защиты не так хорошо известен, и им нередко незаслуженно пренебрегают.

 

Гальваническое разделение цепей

На рис. 1 показана упрощенная структурная схема электронного устройства без гальванического разделения цепей. На входах и на шине питания установлены защитные TVS-диоды, корпус заземлен. Поскольку современные TVS-диоды имеют очень малую паразитную емкость, их можно подключать к сигнальным линиям с высокоскоростными сигналами. Они способны защитить систему от импульсов мощностью несколько киловатт и длительностью всего несколько пикосекунд.

Упрощенная структурная схема электронного устройства без гальванического разделения цепей

Рис. 1. Упрощенная структурная схема электронного устройства без гальванического разделения цепей

Другими словами, эти диоды при превышении порогового напряжения замыкают входную цепь накоротко на землю, удерживая на входе безопасное напряжение. При этом они могут в течение короткого времени длительностью несколько микросекунд (напомним, что стандартный испытательный импульс имеет форму 8/20 или 10/1000) проводить токи величиной несколько сотен ампер. Такие замечательные свойства диодов позволяют хорошо защищать схему от повреждения, но в то же время создают проблемы для помехоустойчивости из-за протекания большого импульсного тока по общей земле.

В значительной степени решить эту проблему можно за счет гальванического разделения цепей. Упрощенная структурная схема устройства с гальваническим разделением цепей показана на рис. 2. В данном случае входные тракты системы и ее питание отделены от центральной части системы гальваническим барьером. Обе части системы имеют разное заземление. Входная часть системы использует «плавающее» заземление ISO GND. Между этими землями существует паразитная емкость, представляющая собой сумму всех паразитных емкостей между изолированными частями.

Рис. 2. Упрощенная структурная схема устройства с гальваническим разделением цепей

При воздействии всплесков напряжения на входную часть системы это напряжение прикладывается и к изолирующему барьеру. Через проходную емкость этого барьера и паразитную емкость между землями короткие пики напряжения и тока проходят в изолированную часть системы. Избавиться от этого эффекта нельзя, но уменьшить его вполне возможно. Для этого между землями необходимо включить высоковольтный конденсатор СISO как это показано на рис. 2.

гальваническая развязка

Рис. 3. Эффект от включения конденсатора СISO

Эффект от включения конденсатора СISO, иллюстрируется на рис. 3, на котором показаны результаты симулирования в случае приложения к входу электростатических разрядов с формой импульса10/100 и амплитудой 8 кВ (рис. 3а) и амплитудой 4 кВ (рис. 3б). Как и следовало ожидать, дополнительный конденсатор уменьшает амплитуду импульса и «заваливает» его фронт. Причем чем больше емкость этого конденсатора, тем более выражен данный эффект.

Не менее интересны и результаты сравнения неизолированной и изолированной системы при протекании быстрого переходного процесса во входной линии. Результаты моделирования для этого случая при импульсе напряжения 1 кВ показаны на рисунке 4. В этом случае эффект применения конденсатора СISO также предсказуем — заметно уменьшается амплитуда тока и длительность его протекания. Более подробно ознакомиться с результатами испытаний и с обсуждением того, как влияет емкость и сопротивление изоляционного барьера, можно, например, в [1–2].

гальваническая развязка

Рис. 4. Результаты моделирования при импульсе напряжения 1 кВ

В любом случае следует иметь в виду, что использование гальванического разделения входных цепей системы от ее центральной части заметно снижает влияние всплесков перенапряжений, возникающих на входе из-за быстрых переходных процессов, электростатических разрядов и мощных помех. Причем чем меньше значение проходной емкости, тем больше эффект от применения гальванической развязки.

Введение дополнительного конденсатора СISO помогает уменьшить влияние внешних воздействий. Выбор величины емкости зависит от условий эксплуатации. В рассмотренных выше случаях (рис. 3–4) емкость конденсатора СISO по-разному влияла на изменение во времени токов и напряжений, протекающих через TVS-диоды, что объясняется разными условиями проведения испытаний на стойкость к электростатическому разряду и к переходным процессам на входных сигнальных линиях.

 

Практическое использование гальванического разделения цепей

Рассмотрим практический пример использования гальванического разделения цепей. Многие компании производят гальванические развязки сигнальных цепей, но далеко не всегда они содержат встроенные DC/DC-преобразователи для разделения цепей питания. Насколько известно автору, среди работающих на нашем рынке компаний гальванические развязки с разделением цепей питания производят Analog Devices, Texas Instruments, Mornsun. К ним можно причислить и компанию SiLabs, но следует учесть, что ее компоненты содержат ключи силового каскада, но не имеют встроенного трансформатора. Применение развязок с встроенными DC/DC-преобразователями позволяет сократить занимаемое на плате место, упрощает топологию и, как следствие, облегчает решение проблем электромагнитной совместимости.

В качестве примера рассмотрим гальваническую развязку ISOW784x компании Texas Instruments. Ее структурная схема показана на рис. 5.

Структурная схема ISOW784x

Рис. 5. Структурная схема ISOW784x

Приведем основные параметры ISOW784x:

  • напряжение питания: 3,3–5 В;
  • выходная мощность встроенного DC/DC-преобразователя: 0,65 Вт;
  • выходной ток встроенного DC/DC-преобразователя (max): 130 мА;
  • скорость передачи данных (max): 100 Мбит/с;
  • стойкость к изменению синфазного напряжения: 100 кВ/мкс;
  • электрическая прочность изолирующего барьера: 5 кВ (СКЗ) и 7,071 кВ в пике;
  • диапазон рабочей температуры: –40…125 °C;
  • корпус: 16‑выводной SOIC размером 10,3×7,5 мм.

Максимального выходного тока 130 мА встроенного DC/DC-преобра­­зователя, как правило, вполне достаточно для того, чтобы организовать питание четырех трактов входных сигналов. В качестве диэлектрика в развязке используется диоксид кремния SiO2. Его диэлектрическая прочность достигает 500 В (СКЗ)/мкм, благодаря чему и достигается высокая электрическая прочность изоляции, позволяющая с запасом удовлетворить требования стандартов электробезопасности.

Заметим, что никакое гальваническое разделение цепей не означает полного разделения частей. Проходные емкости собственно развязки, особенно малогабаритного встроенного трансформатора DC/DC-преобразователя, и паразитные емкости платы создают токовый контур, который представляет собой антенну, излучающую помехи. Причем чем выше скорость передачи данных и больше площадь токовой петли из паразитных емкостей, тем больше величина излучаемых помех. На эти обстоятельства следует обратить внимание при разработке топологии платы и постараться уменьшить паразитные емкости между двумя частями системы.

Уменьшить величину токовой петли может Y2‑конденсатор СISO (рис. 2). Напомним, что по требованиям стандарта IEC60384-1 максимально допустимое напряжение Y2‑конденсатора должно находиться в диапазоне 150–300 В (АС). Этот конденсатор должен выдерживать пиковое напряжение 5 кВ. Но, к сожалению, такой конденсатор имеет и паразитную индуктивность выводов, которая снижает эффективность его использования в полосе частот выше 200–300 МГц.

Решением этой проблемы может стать емкость, образованная слоями печатной платы (stitching capacitance). На рис. 6 показан пример формирования такой емкости на четырехслойной печатной плате. Изолированные части системы размещаются на верхнем и нижнем слоях, емкость образуется с помощью слоев земли и питания. В данном случае величина емкости составила 30 пФ. Подробный расчет, создаваемой таким образом емкости, изложен в [4].

Конденсатор, образованный слоями печатной платы (stitching capacitance)

Рис. 6. Конденсатор, образованный слоями печатной платы (stitching capacitance)

 

Виды гальванической развязки

В микросхемах гальванической развязки используются, в основном, три способа гальванического разделения:

  • оптронная развязка;
  • трансформаторная развязка;
  • КМОП.

Оптронная развязка известна очень давно. Пожалуй, наибольших успехов в производстве гальванических оптронных развязок достигли компании Avago (ныне Broadcom) и Toshiba. Основными ограничивающими факторами в использовании оптронных развязок являются температурная зависимость, временные задержки, из-за которых может происходить рассинхронизация тактовых сигналов и данных, ограничение скорости передачи и довольно большое энерго­потребление. В высокоскоростных интерфейсах оптронная развязка не находит широкого применения.

Трансформаторная развязка наилучшим способом реализована в технологии iCoupler компании Analog Devices, а развязка с использованием КМОП-технологии — в технологиях компаний Texas Instruments и SiLabs. Обе эти технологии позволяют увеличить электрическую прочность изоляции до более чем 5 кВ (АС).

В технологии iCoupler планарный микротрансформатор формируется на кристалле кремния. Первичная и вторичная части этого трансформатора разделены полиимидом с высокой электрической прочностью. В КМОП-технологии кристаллы, образующие первичную и вторичную часть развязки, разделены дифференциальным емкостным изолирующим барьером. С точки зрения автора, трансформаторная развязка и емкостная развязка КМОП-технологии практически равноценны при использовании в сетях передачи данных. Ни одна из них не имеет явных преимуществ над другой.

Несмотря на отмеченные выше недостатки оптронных развязок, следует сказать несколько слов в их защиту. Нередко в специализированных СМИ высказывается мнение о том, что этот вид развязки якобы устарел и она во всех отношениях уступает конкурентам. В качестве доказательства приводятся результаты сравнительных испытаний или моделирования.

Например, в [4] среди прочих характеристик рассматривается важный параметр — стойкость к изменению синфазного напряжения (common-mode transient immunity, CMTI). Сравнивается реакция на изменение синфазного напряжения оптронной развязки HCPL‑4506 (с CMTI = 20 кВ/мкс) и развязки Si8712A (с CMTI свыше 50 кВ/мкс), производимой по КМОП-технологии. Как и следовало ожидать, результаты сравнительных испытаний показали, что Si8712A значительно меньше реагирует на изменение синфазного напряжения, чем HCPL‑4506.

Результат объясняется наличием паразитных емкостей и несовершенством схемы HCPL‑4506 (рис. 7). Действительно, как уже упоминалось, паразитные проходные емкости ухудшают характеристики развязки, но дело в том, что для испытаний был отобран далеко не лучший вариант оптронной развязки. Например, оптронная развязка ACNW3410 от Avago (Broadcom) в драйвере затвора использует улучшенную схему и ее величина CMTI = 100 кВ/мкс та же, что у развязок, производимых по двум другим технологиям.

 Схема HCPL-450 с паразитными емкостями

Рис. 7. Схема HCPL-450 с паразитными емкостями

В заключение отметим, что оптронные развязки имеют свою нишу применения. Прежде всего, это одноканальные развязки сигнальных линий и драйверы затворов. Из-за относительно больших задержек распространения сигналов и возможных рассогласований этих задержек между каналами не рекомендуется использовать их в многоканальных системах передачи данных и в драйверах затвора силовых каскадов с двумя и более силовыми ключами.

Литература
  1. How to use isolation to improve ESD, EFT and surge immunity in industrial systems // www.ti.com
  2. 2. High-voltage reinforced isolation: Definitions and test methodo-logies // www.ti.com
  3. 3. Have Your Cake and Eat It, Too: Overcoming Conflicting Isolation and EMC Standards // www.electronicdesign.com
  4. 4. Low-Emission Designs with ISOW7841 Integrated Signal and Power Isolator // www.electronicdesign.com
  5. 5. Isolator vs. Optocoupler Technology // www.silabs.com

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Дополнительный материал